Nilai lim_(x→0)⁡ (1-cos^2⁡ x)/(x^2 cot⁡(x+π/3))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \frac{1-\cos^2 x}{x^2 \cot (x+\frac{\pi}{3})} = \cdots \)

  1. -1
  2. 0
  3. 1
  4. \( \frac{\sqrt{2}}{2} \)
  5. \( \sqrt{3} \)

(SNMPTN 2012)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \frac{1-\cos^2 x}{x^2 \cot (x+\frac{\pi}{3})} &= \lim_{x \to 0} \ \frac{\sin^2 x}{x^2 \cot (x+\frac{\pi}{3})} \\[8pt] &= \lim_{x \to 0} \ \frac{\sin^2 x}{x^2} \cdot \lim_{x \to 0} \ \frac{1}{\cot (x+\frac{\pi}{3})} \\[8pt] &= (1)^2 \cdot \frac{1}{\cot(0+\frac{\pi}{3})} = 1 \cdot \frac{1}{\cot \frac{\pi}{3}} \\[8pt] &= \tan \frac{\pi}{3} = \sqrt{3} \end{aligned}

Jawaban E.